Format

Send to

Choose Destination
Biophys J. 1991 Oct;60(4):812-24.

X-ray studies of order-disorder transitions in the myosin heads of skinned rabbit psoas muscles.

Author information

1
Open University Research Unit, Oxford, United Kingdom.

Abstract

Using x-rays from a laboratory source and an area detector, myosin layer lines and the diffuse scattering between them in the moderate angle region have been recorded. At full overlap, incubation of rigor muscles with S-1 greatly reduces the diffuse scattering. Also, three of the four actin-based layer lines lying close to the meridian (Huxley, H. E., and W. Brown, 1967. J. Mol. Biol. 30:384-434; Haselgrove, J. C. 1975. J. Mol. Biol. 92:113-143) increase, suggesting fuller labeling of the actin filaments. These results are consistent with the idea (Poulsen, F. R., and J. Lowy, 1983. Nature [Lond.]. 303:146-152) that some of the diffuse scattering in rigor muscles is due to a random mixture of actin monomers with and without attached myosin heads (substitution disorder). In relaxed muscles, regardless of overlap, lowering the temperature from 24 to 4 degrees C practically abolishes the myosin layer lines (a result first obtained by Wray, J.S. 1987. J. Muscle Res. Cell Motil. 8:62 (a). Abstr.), whilst the diffuse scattering between these layer lines increases appreciably. Similar changes occur in the passage from rest to peak tetanic tension in live frog muscle (Lowy, J., and F.R. Poulsen. 1990. Biophys. J. 57:977-985). Cooling the psoas demonstrates that the intensity relation between the layer lines and the diffuse scattering is of an inverse nature, and that the transition occurs over a narrow temperature range (12-14 degrees C) with a sigmoidal function. From these results it would appear that the helical arrangement of the myosin heads is very temperature sensitive, and that the disordering effect does not depend on the presence of actin. Measurements along the meridian reveal that the intensity of the diffuse scattering increases relatively little and does so in a nearly linear manner: evidently the axial order of the myosin heads is much less temperature sensitive. The combined data support the view (Poulsen, F. R., and J. Lowy. 1983. Nature [Lond.]. 303:146-152) that in relaxed muscles a significant part of the diffuse scattering originates from disordered myosin heads. The observation that the extent of the diffuse scattering is greater in the equatorial than in the meridional direction suggests that the disordered myosin heads have an orientation which is on average more parallel to the filament axis.

PMID:
1742454
PMCID:
PMC1260133
DOI:
10.1016/S0006-3495(91)82116-6
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center