Send to

Choose Destination
Gene Ther. 2007 Jun;14(12):981-8. Epub 2007 Apr 5.

In vivo expression of GLP-1/IgG-Fc fusion protein enhances beta-cell mass and protects against streptozotocin-induced diabetes.

Author information

Department of Medicine, University of Toronto, Ontario, Canada.


Glucagon-like peptide 1 (GLP-1) and its analogue exendin-4 (Ex4) have displayed potent glucose homeostasis-modulating characteristics in type 2 diabetes (T2D). However, there are few reports of effectiveness in type 1 diabetes (T1D) therapy, where there is massive loss of beta cells. We previously described a novel GLP-1 analogue consisting of the fusion of active GLP-1 and IgG heavy chain constant regions (GLP-1/IgG-Fc), and showed that in vivo expression of the protein, via electroporation-enhanced intramuscular plasmid-based gene transfer, normalized blood glucose levels in T2D-prone db/db mice. In the present study, GLP-1/IgG-Fc and Ex4/IgG-Fc were independently tested in multiple low-dose streptozotocin-induced T1D. Both GLP-1/IgG-Fc and Ex4/IgG-Fc effectively reduced fed blood glucose levels in treated mice and ameliorated diabetes symptoms, where as control IgG-Fc had no effect. Treatment with GLP-1/IgG-Fc or Ex4/IgG-Fc improved glucose tolerance and increased circulating insulin and GLP-1 levels. It also significantly enhanced islet beta-cell mass, which is likely a major factor in the amelioration of diabetes. This suggests that GLP-1/IgG-Fc gene therapy may be applicable to diseases where there is either acute or chronic beta-cell injury.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center