Format

Send to

Choose Destination
Cancer Res. 2007 Apr 1;67(7):3220-8.

Nuclear factor-kappaB and manganese superoxide dismutase mediate adaptive radioresistance in low-dose irradiated mouse skin epithelial cells.

Author information

1
Division of Molecular Radiobiology, School of Health Sciences and Purdue Cancer Center, Purdue University, West Lafayette, Indiana, USA.

Abstract

Mechanisms governing inducible resistance to ionizing radiation in untransformed epithelial cells pre-exposed to low-dose ionizing radiation (LDIR; </=10 cGy) are not well understood. The present study provides evidence that pre-exposure to 10 cGy X-rays increases clonogenic survival of mouse skin JB6P+ epithelial cells subsequently exposed to 2 Gy doses of gamma-rays. To elucidate the molecular pathways of LDIR-induced adaptive radioresistance, the transcription factor nuclear factor-kappaB (NF-kappaB) and a group of NF-kappaB-related proteins [i.e., p65, manganese superoxide dismutase (MnSOD), phosphorylated extracellular signal-regulated kinase, cyclin B1, and 14-3-3zeta] were identified to be activated as early as 15 min after LDIR. Further analysis revealed that a substantial amount of both 14-3-3zeta and cyclin B1 accumulated in the cytoplasm at 4 to 8 h when cell survival was enhanced. The nuclear 14-3-3zeta and cyclin B1 were reduced and increased at 4 and 24 h, respectively, after LDIR. Using YFP-fusion gene expression vectors, interaction between 14-3-3zeta and cyclin B1 was visualized in living cells, and LDIR enhanced the nuclear translocation of the 14-3-3zeta/cyclin B1 complex. Treatment of JB6P+ cells with the NF-kappaB inhibitor IMD-0354 suppressed LDIR-induced expression of MnSOD, 14-3-3zeta, and cyclin B1 and diminished the adaptive radioresistance. In addition, treatment with small interfering RNA against mouse MnSOD was shown to inhibit the development of LDIR-induced radioresistance. Together, these results show that NF-kappaB, MnSOD, 14-3-3zeta, and cyclin B1 contribute to LDIR-induced adaptive radioresistance in mouse skin epithelial cells.

PMID:
17409430
DOI:
10.1158/0008-5472.CAN-06-2728
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center