Send to

Choose Destination
Biochimie. 2007 Jun-Jul;89(6-7):779-88. Epub 2007 Feb 20.

The human 2'-5'oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2'-5' instead of 3'-5' phosphodiester bond formation.

Author information

UPR 2228 CNRS, UFR Biomédicale, Université René Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France.


The demonstration by Kerr and colleagues that double-stranded (ds) RNA inhibits drastically protein synthesis in cell-free systems prepared from interferon-treated cells, suggested the existence of an interferon-induced enzyme, which is dependent on dsRNA. Consequently, two distinct dsRNA-dependent enzymes were discovered: a serine/threonine protein kinase that nowadays is referred to as PKR and a 2'-5'oligoadenylate synthetase (2'-5'OAS) that polymerizes ATP to 2'-5'-linked oligomers of adenosine with the general formula pppA(2'p5'A)(n), n>or=1. The product is pppG2'p5'G when GTP is used as a substrate. Three distinct forms of 2'-5'OAS exist in human cells, small, medium, and large, which contain one, two, and three OAS units, respectively, and are encoded by distinct genes clustered on the 2'-5'OAS locus on human chromosome 12. OASL is an OAS like IFN-induced protein encoded by a gene located about 8 Mb telomeric from the 2'-5'OAS locus. OASL is composed of one OAS unit fused at its C-terminus with two ubiquitin-like repeats. The human OASL is devoid of the typical 2'-5'OAS catalytic activity. In addition to these structural differences between the various OAS proteins, the three forms of 2'-5'OAS are characterized by different subcellular locations and enzymatic parameters. These findings illustrate the apparent structural and functional complexity of the human 2'-5'OAS family, and suggest that these proteins may have distinct roles in the cell.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center