Send to

Choose Destination
See comment in PubMed Commons below
Life Sci. 2007 May 8;80(22):2045-50. Epub 2007 Mar 12.

Triiodothyronine (T3)-mediated toxicity and induction of apoptosis in insulin-producing INS-1 cells.

Author information

  • 1Institute of Clinical Biochemistry, Hannover Medical School, D-30623 Hannover, Germany.


Thyroid hormones reduce glucose tolerance in humans and animals. This effect is related to a decrease of glucose-induced insulin secretion following a reduction of pancreatic beta cell mass due to beta cell loss. The aim of this study was to analyze in vitro the mechanisms underlying the effects of triiodothyronine (T(3)) on the cell viability and cell cycle caused by changes of cell death or proliferation rate of insulin-producing INS-1 cells. 72-h Exposure of INS-1 cells to increasing T(3) concentrations up to 500 microM resulted in a significant viability reduction. This T(3) toxicity was caused by an increased apoptotic cell death rate, which was accompanied by a decreased proliferation rate. Inhibitory effects of T(3) on glucose-induced insulin secretion were already seen after 24 h of incubation, indicating that the deleterious effects of T(3) were time-dependent, changing from specific cellular dysfunctions to a severe and extended disturbance of the cellular survival program. Only T(3) concentrations higher than 250 microM were able to decrease cell viability and proliferation rate, to increase the rate of apoptosis and to reduce glucose-induced insulin secretion. These micromolar T(3) concentrations were significantly higher than the concentration range of T(3) receptor binding, indicating that other non-receptor-mediated mechanisms beyond the receptor level must be responsible for the observed toxic effects of T(3) in vitro.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center