Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Med. 2007 Apr;13(4):486-91. Epub 2007 Apr 1.

The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2.

Author information

1
Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, Heilongjiang 150086, China. yangbf@ems.hrbmu.edu.cn

Erratum in

  • Nat Med. 2011 Dec;17(12):1693.

Abstract

MicroRNAs (miRNAs) are endogenous noncoding RNAs, about 22 nucleotides in length, that mediate post-transcriptional gene silencing by annealing to inexactly complementary sequences in the 3'-untranslated regions of target mRNAs. Our current understanding of the functions of miRNAs relies mainly on their tissue-specific or developmental stage-dependent expression and their evolutionary conservation, and therefore is primarily limited to their involvement in developmental regulation and oncogenesis. Of more than 300 miRNAs that have been identified, miR-1 and miR-133 are considered to be muscle specific. Here we show that miR-1 is overexpressed in individuals with coronary artery disease, and that when overexpressed in normal or infarcted rat hearts, it exacerbates arrhythmogenesis. Elimination of miR-1 by an antisense inhibitor in infarcted rat hearts relieved arrhythmogenesis. miR-1 overexpression slowed conduction and depolarized the cytoplasmic membrane by post-transcriptionally repressing KCNJ2 (which encodes the K(+) channel subunit Kir2.1) and GJA1 (which encodes connexin 43), and this likely accounts at least in part for its arrhythmogenic potential. Thus, miR-1 may have important pathophysiological functions in the heart, and is a potential antiarrhythmic target.

PMID:
17401374
DOI:
10.1038/nm1569
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center