Format

Send to

Choose Destination
See comment in PubMed Commons below
Diabetes. 2007 Apr;56(4):1069-77.

Transcriptional regulation of the endoplasmic reticulum stress gene chop in pancreatic insulin-producing cells.

Author information

1
Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik, 808-CP-618, 1070 Brussels, Belgium.

Abstract

Endoplasmic reticulum stress-mediated apoptosis may play an important role in the destruction of pancreatic beta-cells, thus contributing to the development of type 1 and type 2 diabetes. One of the regulators of endoplasmic reticulum stress-mediated cell death is the CCAAT/enhancer binding protein (C/EBP) homologous protein (Chop). We presently studied the molecular regulation of Chop expression in insulin-producing cells (INS-1E) in response to three pro-apoptotic and endoplasmic reticulum stress-inducing agents, namely the cytokines interleukin-1beta + interferon-gamma, the free fatty acid palmitate, and the sarcoendoplasmic reticulum pump Ca(2+) ATPase blocker cyclopiazonic acid (CPA). Detailed mutagenesis studies of the Chop promoter showed differential regulation of Chop transcription by CPA, cytokines, and palmitate. Whereas palmitate- and cytokine-induced Chop expression was mediated via a C/EBP-activating transcription factor (ATF) composite and AP-1 binding sites, CPA induction required the C/EBP-ATF site and the endoplasmic reticulum stress response element. Cytokines, palmitate, and CPA induced eIF2alpha phosphorylation in INS-1E cells leading to activation of the transcription factor ATF4. Chop transcription in response to cytokines and palmitate depends on the binding of ATF4 and AP-1 to the Chop promoter, but distinct AP-1 dimers were formed by cytokines and palmitate. These results suggest a differential response of beta-cells to diverse endoplasmic reticulum stress inducers, leading to a differential regulation of Chop transcription.

PMID:
17395747
DOI:
10.2337/db06-1253
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center