Send to

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2007 Jul;148(7):3122-30. Epub 2007 Mar 29.

Insulin-like growth factor-I and fibroblast growth factor, but not growth hormone, affect growth plate chondrocyte proliferation.

Author information

Division of Pediatric Endocrinology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9063, USA.


Of the many factors that regulate linear growth, IGF-I has a central role in epiphyseal chondrocyte development. Whether IGF-I is solely of systemic or also of local origin is uncertain, as is how other growth factors interact with IGF-I at the growth plate. We studied the proliferative effects of IGF-I on juvenile bovine epiphyseal chondrocytes fractionated by density gradient centrifugation. Cell density correlated with size, glycogen content, and gene expression patterns. There was a gradient of response to IGF-I, with the greatest proliferative response in high-density cells corresponding to the reserve zone, as measured by [3H]thymidine uptake. Low-density (hypertrophic zone) cells proliferated only when exposed to IGF-I and basic fibroblast growth factor (FGF). The gradient of IGF-I response correlated with [125I]IGF-I binding as determined by Scatchard analysis: IGF-I receptor number was 10-fold greater in reserve zone cells than in hypertrophic cells. When exposed to basic FGF for 24 hours, IGF-I binding in hypertrophic cells increased 3-fold. In contrast, no specific binding of GH was demonstrated in juvenile bovine chondrocytes. GH produced neither signal transducer and activator of transcription phosphorylation, increased proliferation, nor increased IGF-I mRNA levels in any chondrocyte fraction. IGF-I mRNA levels were extremely low at 800-1100 copies/microg 18S RNA in bovine chondrocytes. These results suggest that the major regulator of chondrocyte proliferation is systemic IGF-I; FGFs may influence the actions of IGF-I at the growth plate by altering its receptor number in chondrocytes.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center