Send to

Choose Destination
J Neurochem. 2007 May;101(4):1134-44. Epub 2007 Mar 29.

Glutamate-dependent transcriptional regulation of GLAST/EAAT1: a role for YY1.

Author information

Departamento de Genética y Biología Molecular y Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados Campus Zacatenco, México City, México.


Glutamate is the major excitatory transmitter in the vertebrate brain and its extracellular levels are tightly regulated to prevent excitotoxic effects. The Na(+)-dependent glutamate/aspartate transporter GLAST/EAAT1 is regulated in the short and in the long term by glutamate. A receptors-independent change in its membrane translocation rate, accounts for an acute modulation in GLAST/EAAT1 transport. In contrast, activation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate subtype of glutamate receptors represses the transcription of the chick glast gene. A glutamate responsive element has been mapped to the promoter region of this gene containing a bonafide binding site for the transcription factor Ying-Yang 1. Using cultured chick cerebellar Bergmann glia cells, glutamate elicited a time and dose-dependent increase in Ying-Yang 1 DNA binding consistent with the negative response generated in a reporter gene construct controlled for Ying-Yang 1. Over-expression of this transcription factor leads to a substantial reduction in GLAST/EAAT1 transporter uptake and an important decrease in mRNA levels, all associated with the transcriptional repression of the chick glast promoter activity. These results provide evidence for an involvement of Ying-Yang 1 in the transcriptional response to glutamate in glial cells and favor the notion of a relevant role of this factor in GLAST/EAAT1 transcriptional control.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center