Send to

Choose Destination
Am J Physiol Renal Physiol. 2007 Jul;293(1):F227-35. Epub 2007 Mar 27.

Ca2+ dependence of flow-stimulated K secretion in the mammalian cortical collecting duct.

Author information

Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1664, New York, NY 10029, USA.


Apical low-conductance SK and high-conductance Ca(2+)-activated BK channels are present in distal nephron, including the cortical collecting duct (CCD). Flow-stimulated net K secretion (J(K)) in the CCD is 1) blocked by iberiotoxin, an inhibitor of BK but not SK channels, and 2) associated with an increase in [Ca(2+)](i), leading us to conclude that BK channels mediate flow-stimulated J(K). To examine the Ca(2+) dependence and sources of Ca(2+) contributing to flow-stimulated J(K), J(K) and net Na absorption (J(Na)) were measured at slow (approximately 1) and fast (approximately 5 nl.min(-1).mm(-1)) flow rates in rabbit CCDs microperfused in the absence of luminal Ca(2+) or after pretreatment with BAPTA-AM to chelate intracellular Ca(2+), 2-aminoethoxydiphenyl borate (2-APB), to inhibit the inositol 1,4,5-trisphosphate (IP(3)) receptor or thapsigargin to deplete internal stores. These treatments, which do not affect flow-stimulated J(Na) (Morimoto et al. Am J Physiol Renal Physiol 291: F663-F669, 2006), inhibited flow-stimulated J(K). Increases in [Ca(2+)](i) stimulate exocytosis. To test whether flow induces exocytic insertion of preformed BK channels into the apical membrane, CCDs were pretreated with 10 microM colchicine (COL) to disrupt microtubule function or 5 microg/ml brefeldin-A (BFA) to inhibit delivery of channels from the intracellular pool to the plasma membrane. Both agents inhibited flow-stimulated J(K) but not J(Na) (Morimoto et al. Am J Physiol Renal Physiol 291: F663-F669, 2006), although COL but not BFA also blocked the flow-induced [Ca(2+)](i) transient. We thus speculate that BK channel-mediated, flow-stimulated J(K) requires an increase in [Ca(2+)](i) due, in part, to luminal Ca(2+) entry and ER Ca(2+) release, microtubule integrity, and exocytic insertion of preformed channels into the apical membrane.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center