Format

Send to

Choose Destination
See comment in PubMed Commons below
Invest Ophthalmol Vis Sci. 2007 Apr;48(4):1864-72.

Delayed loss of cone and remaining rod photoreceptor cells due to impairment of choroidal circulation after acute light exposure in rats.

Author information

1
Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 S.L. Young Boulevard, Oklahoma City, OK 73104, USA. tanito-oph@umin.ac.jp

Abstract

PURPOSE:

To examine the long-term effects of acute photooxidative stress in the retina, retinal pigment epithelium (RPE), and choroid.

METHODS:

Albino rats injected with either the protective antioxidant phenyl-N-tert-butylnitrone (PBN) or saline 30 minutes before exposure to 5 klx white fluorescent light for 6 hours were kept for up to 3 months in 5 lux cyclic light. Electroretinograms were recorded, and the outer nuclear layer (ONL) and the choroidal thickness and area were measured after hematoxylin-eosin (H&E) staining. The expression of rod, cone, and RPE cell markers was detected by Western blotting, and apoptosis was analyzed by TUNEL staining. Oxidative stress was analyzed by immunohistochemistry against 4-hydroxynonenal (4-HNE)-modified proteins. Retinal and choroidal ultrastructures were observed by transmission electron microscopy (TEM). Choroidal circulation was analyzed by in vivo staining of the choroidal layer by trypan blue.

RESULTS:

In the saline-injected animals, TUNEL- and 4-HNE-labeling in the ONL, RPE, and choroid were higher 24 hours and 7 days after light exposure, and ERG amplitude, ONL and choroidal thickness and area, and rhodopsin and RPE65 expression were lower 7 or more days after light exposure than in phenyl-N-tert-butylnitrone (PBN)-injected animals. In the saline-injected animals, the expression of mid-wavelength opsin and the presence of cone cells in the ONL and the choroidal circulation were preserved for 7 days after light exposure but started to decrease by 1 month and continued to decrease for 3 months after light exposure. An increase in TUNEL-positive cells was observed in the ONL at the inferior peripheral retina, just behind the iris, by 3 months after light exposure. Delayed loss of cone cells, remaining rod cells, and choroidal circulation were counteracted by PBN treatment.

CONCLUSIONS:

Although cone cells are resistant to cell damage induced by acute photooxidative stress, progressive loss of cone cells continued for up to 3 months after light exposure. Impaired choroidal circulation is likely to be involved in the mechanism of delayed photoreceptor cell death after light exposure. Preserving choroidal circulation may provide a novel target for preserving the cone and the remaining rod cells in patients with retinal degeneration such as retinitis pigmentosa.

PMID:
17389522
DOI:
10.1167/iovs.06-1065
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center