Send to

Choose Destination
Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H548-56. Epub 2007 Mar 23.

Myogenic contractility is more dependent on myofilament calcium sensitization in term fetal than adult ovine cerebral arteries.

Author information

Department of Physiology and Pharmacology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.


Regulation of cytosolic calcium and myofilament calcium sensitivity varies considerably with postnatal age in cerebral arteries. Because these mechanisms also govern myogenic tone, the present study used graded stretch to examine the hypothesis that myogenic tone is less dependent on calcium influx and more dependent on myofilament calcium sensitization in term fetal compared with adult cerebral arteries. Term fetal and adult posterior communicating cerebral arteries exhibited similar myogenic responses, with peak tensions averaging 24 and 26% of maximum contractile force produced in any given tissue in response to an isotonic Krebs buffer containing 122 mM K(+) (K(max)) at optimum stretch ratios (working diameter/unstressed diameter) of 2.19 and 2.23, respectively. Graded stretch increased cytosolic Ca(2+) concentration at stretch ratios >2.0 in adult arteries, but increased Ca(2+) concentration only at stretch ratios >2.3 in fetal arteries. In permeabilized arteries, myogenic tone peaked at a stretch ratio of 2.1 in both fetal and adult arteries. The fetal %K(max) values at peak myogenic tone were not significantly different at either pCa 7.0 (23%) or pCa 5.5 (25%) but were significantly less at pCa 8.0 (8.4 +/- 2.3%). Conversely, adult %K(max) values at peak myogenic tone were significantly less at both pCa 8.0 (10.4 +/- 1.8%) and pCa 7.0 (16%) than at pCa 5.5 (27%). The maximal extents of stretch-induced increases in myosin light chain phosphorylation in intact fetal (20%) and adult (17%) arteries were similar. The data demonstrate that the cerebrovascular myogenic response is highly conserved during postnatal maturation but is mediated differently in fetal and adult cerebral arteries.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center