Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2007 Mar 15;67(6):2425-9.

Extrathymic generation of tumor-specific T cells from genetically engineered human hematopoietic stem cells via Notch signaling.

Author information

1
Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-1201, USA.

Abstract

Adoptive cell transfer (ACT) of tumor-reactive lymphocytes has been shown to be an effective treatment for cancer patients. Studies in murine models of ACT indicated that antitumor efficacy of adoptively transferred T cells is dependent on the differentiation status of the cells, with lymphocyte differentiation inversely correlated with in vivo antitumor effectiveness. T-cell in vitro development technologies provide a new opportunity to generate naive T cells for the purpose of ACT. In this study, we genetically modified human umbilical cord blood-derived hematopoietic stem cells (HSCs) to express tumor antigen-specific T-cell receptor (TCR) genes and generated T lymphocytes by coculture with a murine cell line expressing Notch-1 ligand, Delta-like-1 (OP9-DL1). Input HSCs were differentiated into T cells as evidenced by the expression of T-cell markers, such as CD7, CD1a, CD4, CD8, and CD3, and by detection of TCR excision circles. We found that such in vitro differentiated T cells expressed the TCR and showed HLA-A2-restricted, specific recognition and killing of tumor antigen peptide-pulsed antigen-presenting cells but manifested additional natural killer cell-like killing of tumor cell lines. The genetic manipulation of HSCs has broad implications for ACT of cancer.

PMID:
17363559
PMCID:
PMC2100408
DOI:
10.1158/0008-5472.CAN-06-3977
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center