Send to

Choose Destination
Clin Pharmacol Ther. 2007 Jul;82(1):41-7. Epub 2007 Mar 14.

Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes.

Author information

Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Bonn, Germany.


The influence of CYP2D6 genotype and CYP2D6 inhibitors on enantiomeric plasma levels of tramadol and O-desmethyltramadol as well as response to tramadol was investigated. One hundred and seventy-four patients received one hundred intravenous tramadol 3 mg/kg for postoperative analgesia. Blood samples drawn 30, 90, and 180 min after administration were analyzed for plasma concentrations of the enantiomers (+)-, (-)tramadol and (+)-, (-)O-desmethyltramadol by liquid chromatography-tandem mass spectrometry. Different CYP2D6 genotypes displaying zero (poor metabolizer (PM)), one (heterozygous individual (HZ)/intermediate metabolizer (IM)), two extensive metabolizer (EM), and three (ultra rapid metabolizer (UM)) active genes were compared. Concentrations of O-desmethyltramadol differed in the four genotype groups. Median (1/3 quartile) area under the concentration-time curves for (+)O-desmethyltramadol were 0 (0/11.4), 38.6 (15.9/75.3), 66.5 (17.1/118.4), and 149.7 (35.4/235.4) ng x h/ml for PMs, HZ/IMs, EMs, and UMs (P<0.001). Comedication with CYP2D6 inhibitors decreased (+) O-desmethyltramadol concentrations (P<0.01). In PMs, non-response rates to tramadol treatment increased fourfold compared with the other genotypes (P<0.001). In conclusion, CYP2D6 genotype determined concentrations of O-desmethyltramadol enantiomers and influenced efficacy of tramadol treatment.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center