Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4495-500. Epub 2007 Mar 5.

Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM).

Author information

1
Howard Hughes Medical Institute and Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.

Abstract

The initiation and progression of many human cancers involve either somatic activation of protooncogenes or inactivation of tumor-suppressor genes (TSGs) in sporadic cells. Although sporadic gain-of-function of protooncogenes has been successfully modeled in mice [e.g., Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001) Nature 410:1111-1116], generating a similar degree of sparseness of TSG loss-of-function remains a challenge. Here, we use mosaic analysis with double markers (MADM) to achieve TSG inactivation and concurrent labeling in sporadic somatic cells of mice, closely mimicking loss of heterozygosity as occurs in human cancers. As proof of principle, we studied the consequence of sporadic loss of p27kip1, a cyclin-dependent kinase inhibitor. MADM-mediated loss of p27kip1 results in mutant cell expansion markedly greater than that observed in conventional p27kip1 knockouts. Moreover, the direct comparison of WT and mutant cells at single-cell resolution afforded by MADM reveals that p27kip1 regulates organ size in vivo by cell-autonomous control of cell cycle exit timing. These studies establish MADM as a high-resolution method for modeling sporadic loss of heterozygosity in mice, providing insights into TSG function.

Comment in

PMID:
17360552
PMCID:
PMC1810340
DOI:
10.1073/pnas.0606491104
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center