Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):6951-6. Epub 2007 Mar 8.

Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases.

Author information

  • 1Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.


Studies of the role of proton relays in molecular catalysts for the electrocatalytic production and oxidation of H(2) have been carried out. The electrochemical production of hydrogen from protonated DMF solutions catalyzed by [Ni(P(2)(Ph)N(2)(Ph))(2)(CH(3)CN)](BF(4))(2), 3a (where P(2)(Ph)N(2)(Ph) is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane), permits a limiting value of the H(2) production rate to be determined. The turnover frequency of 350 s(-1) establishes that the rate of H(2) production for the mononuclear nickel catalyst 3a is comparable to those observed for Ni-Fe hydrogenase enzymes. In the electrochemical oxidation of hydrogen catalyzed by [Ni(P(2)(Cy)N(2)(Bz))(2)](BF(4))(2), 3b (where Cy is cyclohexyl and Bz is benzyl), the initial step is the reversible addition of hydrogen to 3b (K(eq) = 190 atm(-1) at 25 degrees C). The hydrogen addition product exists as three nearly isoenergetic isomers 4A-4C, which have been identified by a combination of one- and two-dimensional (1)H, (31)P, and (15)N NMR spectroscopies as Ni(0) complexes with a protonated amine in each cyclic ligand. The nature of the isomers, together with calculations, suggests a mode of hydrogen activation that involves a symmetrical interaction of a nickel dihydrogen ligand with two amine bases in the diphosphine ligands. Single deprotonation of 4 by an external base results in a rearrangement to [HNi(P(2)(Cy)N(2)(Bz))(2)](BF(4)), 5, and this reaction is reversed by the addition of a proton to the nickel hydride complex. The small energy differences associated with significantly different distributions in electron density and protons within these molecules may contribute to their high catalytic activity.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center