Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5163-8. Epub 2007 Mar 2.

Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand.

Author information

Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.


We evolved muscarinic receptors in yeast to generate a family of G protein-coupled receptors (GPCRs) that are activated solely by a pharmacologically inert drug-like and bioavailable compound (clozapine-N-oxide). Subsequent screening in human cell lines facilitated the creation of a family of muscarinic acetylcholine GPCRs suitable for in vitro and in situ studies. We subsequently created lines of telomerase-immortalized human pulmonary artery smooth muscle cells stably expressing all five family members and found that each one faithfully recapitulated the signaling phenotype of the parent receptor. We also expressed a G(i)-coupled designer receptor in hippocampal neurons (hM(4)D) and demonstrated its ability to induce membrane hyperpolarization and neuronal silencing. We have thus devised a facile approach for designing families of GPCRs with engineered ligand specificities. Such reverse-engineered GPCRs will prove to be powerful tools for selectively modulating signal-transduction pathways in vitro and in vivo.

Comment in

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center