Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2007 May;27(10):3589-600. Epub 2007 Mar 12.

Contribution of the serine 129 of histone H2A to chromatin structure.

Author information

Institute of Cell Biology, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland.


Phosphorylation of a yeast histone H2A at C-terminal serine 129 has a central role in double-strand break repair. Mimicking H2A phosphorylation by replacement of serine 129 with glutamic acid (hta1-S129E) suggested that phosphorylation destabilizes chromatin structures and thereby facilitates the access of repair proteins. Here we have tested chromatin structures in hta1-S129 mutants and in a C-terminal tail deletion strain. We show that hta1-S129E affects neither nucleosome positioning in minichromosomes and genomic loci nor supercoiling of minichromosomes. Moreover, hta1-S129E has no effect on chromatin stability measured by conventional nuclease digestion, nor does it affect DNA accessibility and repair of UV-induced DNA lesions by nucleotide excision repair and photolyase in vivo. Similarly, deletion of the C-terminal tail has no effect on nucleosome positioning and stability. These data argue against a general role for the C-terminal tail in chromatin organization and suggest that phosphorylated H2A, gamma-H2AX in higher eukaryotes, acts by recruitment of repair components rather than by destabilizing chromatin structures.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center