Send to

Choose Destination
Genes Cells. 2007 Mar;12(3):421-34.

Recruitment of CG-NAP to the Golgi apparatus through interaction with dynein-dynactin complex.

Author information

Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan.


The structural organization and position of the Golgi apparatus are highly regulated by microtubule cytoskeleton and microtubule motor proteins. The mechanisms linking these proteins to the Golgi apparatus remain elusive. Here, we found that centrosome and Golgi-localized PKN associated protein (CG-NAP) was localized to the Golgi apparatus in a microtubule-dependent manner. Microtubule-binding experiments revealed that CG-NAP possessed two microtubule-binding domains. We also found that CG-NAP was well co-localized with cytoplasmic dynein subunits during recovery from the on-ice treatment of cells that induced dissociation of CG-NAP from the Golgi. Similar co-localization was observed during recovery from the acetate treatment, which has been reported to inhibit the dynein-mediated transport. CG-NAP was co-immunoprecipitated with a dynactin subunit p150(Glued). Expressing the p150(Glued)-binding region of CG-NAP fused with mitochondria-targeting sequence induced recruitment of mitochondria to the pericentriolar area, suggesting that this region interacts with functional cytoplasmic dynein in vivo. Moreover, over-expression of this region caused fragmentation of the Golgi similar to that of dynamitin. These results suggest that CG-NAP is recruited to the minus ends of microtubules by interacting with cytoplasmic dynein, thereby localizes to the Golgi apparatus in a microtubule-dependent manner and possibly involved in the formation of the Golgi near the centrosomes.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center