Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Top Med Chem. 2007;7(5):489-98.

Development of modern InhA inhibitors to combat drug resistant strains of Mycobacterium tuberculosis.

Author information

1
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA. peter.tonge@sunysb.edu

Abstract

Strategies for the development of novel tuberculosis chemotherapeutics against existing drug resistant strains involve the identification and inhibition of novel drug targets as well as the design and synthesis of compounds against historical targets. InhA, the enoyl reductase from the mycobacterial type II fatty acid biosynthesis pathway, is a target of the frontline chemotherapeutic, isoniazid (INH). Importantly, the majority of INH-resistant clinical isolates arise from mutations in KatG, the enzyme responsible for activating isoniazid, into its active form. Thus compounds that inhibit InhA without first requiring KatG activation will be active against the majority of INH resistant strains of Mycobacterium tuberculosis. This review describes the role of InhA in cell wall biosynthesis and recent progress in the development of novel diphenyl ether-based InhA inhibitors that have activity against both sensitive and drug resistant strains of M. tuberculosis.

PMID:
17346194
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd.
    Loading ...
    Support Center