Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2007 Mar 7;27(10):2596-605.

Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain.

Author information

1
Department of Anatomy and Physiology, Laval University, Centre de Recherche du Centre Hospitalier de l'Université Laval, Quebec, Canada G1V 4G2.

Abstract

Here we report in vivo evidence of a neuroprotective role of proliferating microglial cells in cerebral ischemia. Using transgenic mice expressing a mutant thymidine kinase form of herpes simplex virus driven by myeloid-specific CD11b promoter and ganciclovir treatment as a tool, we selectively ablated proliferating (Mac-2 positive) microglia after transient middle cerebral artery occlusion. The series of experiments using green fluorescent protein-chimeric mice demonstrated that within the first 72 h after ischemic injury, the Mac-2 marker [unlike Iba1 (ionized calcium-binding adapter molecule 1)] was preferentially expressed by the resident microglia. Selective ablation of proliferating resident microglia was associated with a marked alteration in the temporal dynamics of proinflammatory cytokine expression, a significant increase in the size of infarction associated with a 2.7-fold increase in the number of apoptotic cells, predominantly neurons, and a 1.8-fold decrease in the levels of IGF-1. A double-immunofluorescence analysis revealed a approximately 100% colocalization between IGF-1 positive cells and Mac-2, a marker of activated/proliferating resident microglia. Conversely, stimulation of microglial proliferation after cerebral ischemia by M-CSF (macrophage colony stimulating factor) resulted in a 1.9-fold increase in IGF-1 levels and a significant increase of Mac2+ cells. Our findings suggest that a postischemic proliferation of the resident microglial cells may serve as an important modulator of a brain inflammatory response. More importantly, our results revealed a marked neuroprotective potential of proliferating microglia serving as an endogenous pool of neurotrophic molecules such as IGF-1, which may open new therapeutic avenues in the treatment of stroke and other neurological disorders.

PMID:
17344397
DOI:
10.1523/JNEUROSCI.5360-06.2007
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center