Send to

Choose Destination
See comment in PubMed Commons below
Anal Biochem. 2007 Apr 15;363(2):275-87. Epub 2007 Feb 13.

Analysis of read length limiting factors in Pyrosequencing chemistry.

Author information

Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA.


Pyrosequencing is a bioluminometric DNA sequencing technique that measures the release of pyrophosphate during DNA synthesis. The amount of pyrophosphate is proportionally converted into visible light by a cascade of enzymatic reactions. Pyrosequencing has heretofore been used for generating short sequence reads (1-100 nucleotides) because certain factors limit the system's ability to perform longer reads accurately. In this study, we have characterized the main read length limiting factors in both three-enzyme and four-enzyme Pyrosequencing systems. A new simulation model was developed to simulate the read length of both systems based on the inhibitory factors in the chemical equations governing each enzymatic cascade. Our results indicate that nonsynchronized extension limits the obtained read length, albeit to a different extent for each system. In the four-enzyme system, nonsynchronized extension due mainly to a decrease in apyrase's efficiency in degrading excess nucleotides proves to be the main limiting factor of read length. Replacing apyrase with a washing step for removal of excess nucleotide proves to be essential in improving the read length of Pyrosequencing. The main limiting factor of the three-enzyme system is shown to be loss of DNA fragments during the washing step. If this loss is minimized to 0.1% per washing cycle, the read length of Pyrosequencing would be well beyond 300 bases.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center