Format

Send to

Choose Destination
See comment in PubMed Commons below
PLoS Biol. 2007 Mar;5(3):e61.

A burst-based "Hebbian" learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement.

Author information

1
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America. dab2024@med.cornell.edu

Abstract

Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with "Hebbian" development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity.

PMID:
17341130
PMCID:
PMC1808114
DOI:
10.1371/journal.pbio.0050061
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Support Center