Send to

Choose Destination
See comment in PubMed Commons below
Eukaryot Cell. 2007 Apr;6(4):592-9. Epub 2007 Mar 2.

Mg2+ deprivation elicits rapid Ca2+ uptake and activates Ca2+/calcineurin signaling in Saccharomyces cerevisiae.

Author information

Max F. Perutz Laboratories, Department of Genetics, University of Vienna, Vienna, Austria.


To learn about the cellular processes involved in Mg(2+) homeostasis and the mechanisms allowing cells to cope with low Mg(2+) availability, we performed RNA expression-profiling experiments and followed changes in gene activity upon Mg(2+) depletion on a genome-wide scale. A striking portion of genes up-regulated under Mg(2+) depletion are also induced by high Ca(2+) and/or alkalinization. Among the genes significantly up-regulated by Mg(2+) starvation, Ca(2+) stress, and alkalinization are ENA1 (encoding a P-type ATPase sodium pump) and PHO89 (encoding a sodium/phosphate cotransporter). We show that up-regulation of these genes is dependent on the calcineurin/Crz1p (calcineurin-responsive zinc finger protein) signaling pathway. Similarly to Ca(2+) stress, Mg(2+) starvation induces translocation of the transcription factor Crz1p from the cytoplasm into the nucleus. The up-regulation of ENA1 and PHO89 upon Mg(2+) starvation depends on extracellular Ca(2+). Using fluorescence resonance energy transfer microscopy, we demonstrate that removal of Mg(2+) results in an immediate increase in free cytoplasmic Ca(2+). This effect is dependent on external Ca(2+). The results presented indicate that Mg(2+) depletion in yeast cells leads to enhanced cellular Ca(2+) concentrations, which activate the Crz1p/calcineurin pathway. We provide evidence that calcineurin/Crz1p signaling is crucial for yeast cells to cope with Mg(2+) depletion stress.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center