Format

Send to

Choose Destination
See comment in PubMed Commons below
Leukemia. 2007 May;21(5):926-35. Epub 2007 Mar 1.

Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies.

Author information

1
Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada. xjiang@bccrc.ca

Abstract

The leukemic stem cells in patients with chronic myeloid leukemia (CML) are well known to be clinically resistant to conventional chemotherapy and may also be relatively resistant to BCR-ABL-targeted drugs. Here we show that the lesser effect of imatinib mesylate (IM) on the 3-week output of cells produced in vitro from lin(-)CD34(+)CD38(-) CML (stem) cells compared with cultures initiated with the CD38(+) subset of lin(-)CD34(+) cells is markedly enhanced (>10-fold) when conditions of reduced growth factor stimulation are used. Quantitative analysis of genes expressed in these different CML subsets revealed a differentiation-associated decrease in IL-3 and G-CSF transcripts, a much more profound decrease in expression of BCR-ABL than predicted by changes in BCR expression, decreasing expression of ABCB1/MDR and ABCG2 and increasing expression of OCT1. p210(BCR-ABL) and kinase activity were also higher in the lin(-)CD34(+)CD38(-) cells and formal evidence that increasing BCR-ABL expression decreases IM sensitivity was obtained from experiments with a cell line model. Nevertheless, within the entire CD34(+) subset of CML cells, BCR-ABL expression was not strongly affected by changes in cell cycle status. Taken together, these results provide the first evidence of multiple mechanisms of innate IM resistance in primitive and quiescent CML cells.

PMID:
17330101
DOI:
10.1038/sj.leu.2404609
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center