Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2007 Feb 26;176(5):629-40.

Rer1p competes with APH-1 for binding to nicastrin and regulates gamma-secretase complex assembly in the early secretory pathway.

Author information

1
Laboratory for Membrane Trafficking, Center for Human Genetics, Katholieke Universiteit Leuven/Vlaams Instituut voor Biotechnologie, Gasthuisberg, Leuven, B-3000 Leuven, Belgium.

Abstract

The gamma-secretase complex, consisting of presenilin, nicastrin, presenilin enhancer-2 (PEN-2), and anterior pharynx defective-1 (APH-1) cleaves type I integral membrane proteins like amyloid precursor protein and Notch in a process of regulated intramembrane proteolysis. The regulatory mechanisms governing the multistep assembly of this "proteasome of the membrane" are unknown. We characterize a new interaction partner of nicastrin, the retrieval receptor Rer1p. Rer1p binds preferentially immature nicastrin via polar residues within its transmembrane domain that are also critical for interaction with APH-1. Absence of APH-1 substantially increased binding of nicastrin to Rer1p, demonstrating the competitive nature of these interactions. Moreover, Rer1p expression levels control the formation of gamma-secretase subcomplexes and, concomitantly, total cellular gamma-secretase activity. We identify Rer1p as a novel limiting factor that negatively regulates gamma-secretase complex assembly by competing with APH-1 during active recycling between the endoplasmic reticulum (ER) and Golgi. We conclude that total cellular gamma-secretase activity is restrained by a secondary ER control system that provides a potential therapeutic value.

PMID:
17325205
PMCID:
PMC2064021
DOI:
10.1083/jcb.200609180
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center