Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Calcium. 2007 Sep;42(3):313-22. Epub 2007 Feb 23.

Localization of sarcolemmal proteins to lipid rafts in the myocardium.

Author information

1
Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1760, USA.

Abstract

The localization of sarcolemmal proteins within the membrane can have a dramatic effect on excitation-contraction coupling. We examine the localization of the Na+-Ca2+ exchanger, the dihydropyridine receptor, and other proteins involved in excitation-contraction coupling in rat heart using biochemical and immunolocalization techniques. Specifically, we assess the distribution of proteins within the lipid raft fraction of the sarcolemma. We find that the distribution of proteins in lipid raft fractions is very dependent on the solubilization technique. A common technique using sodium carbonate/pH 11 to solubilize non-lipid raft proteins was inappropriate for use with sarcolemmal membranes. Use of Triton X-100 was more efficacious as a solubilization agent. A large majority of the Na+-Ca2+ exchanger, Na+/K+-ATPase, and plasma membrane Ca2+ pump are not present in lipid rafts. In contrast, most adenosine A1 receptors and dihydropyridine receptors were in lipid raft fractions. Most of the adenosine A1 receptors could be co-immunoprecipitated with caveolin indicating a localization to caveolae (a subclass of lipid rafts). In contrast, the dihydropyridine receptors could not be co-immunoprecipitated with caveolin. Most biochemical data were confirmed by high resolution immunolocalization studies. Using correlation analysis, only a small fraction of the Na+-Ca2+ exchangers colocalized with caveolin whereas a substantial fraction of dihydropyridine and adenosine A1 receptors did colocalize with caveolin. The most pertinent findings are that the Na+-Ca2+ exchanger and the dihydropyridine receptor are in separate sarcolemmal subcompartments. These spatial relationships may be relevant for understanding excitation-contraction coupling.

PMID:
17320949
PMCID:
PMC2724266
DOI:
10.1016/j.ceca.2007.01.003
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center