Send to

Choose Destination
Ann Neurol. 2007 Feb;61(2):109-19.

Model of infantile spasms induced by N-methyl-D-aspartic acid in prenatally impaired brain.

Author information

Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.



Infantile spasms (a catastrophic epileptic syndrome of childhood) are insensitive to classic antiepileptic drugs. New therapies are limited by lack of animal models. Here we develop a new model of flexion spasms based on prenatal exposure to betamethasone combined with postnatal administration of N-methyl-D-aspartic acid (NMDA) and determine brain structures involved in the induction of flexion spasms.


Pregnant rats received two doses of betamethasone on day 15 of gestation. Offspring was injected with NMDA on postnatal day 15. Effects of adrenocorticotropin therapy on the development of age-specific flexion spasms were determined and electroencephalographic correlates recorded. C-fos immunohistochemistry and [14C]2-deoxyglucose imaging identified brain structures involved in the development of flexion spasms.


Prenatal betamethasone exposure sensitizes rats to development of NMDA-induced spasms and, most importantly, renders the spasms sensitive to adrenocorticotropin therapy. Ictal electroencephalogram results correspond to human infantile spasms: electrodecrement or afterdischarges were observed. Imaging studies defined three principal regions involved in NMDA spasms: limbic areas (except the dorsal hippocampus), hypothalamus, and the brainstem.


Despite certain limitations, our new model correlates well with current infantile spasm hypotheses and opens an opportunity for development and testing of new effective drugs.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center