Format

Send to

Choose Destination
Mol Cancer Res. 2007 Feb;5(2):121-31.

Lysophosphatidic acid down-regulates stress fibers and up-regulates pro-matrix metalloproteinase-2 activation in ovarian cancer cells.

Author information

1
Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago Illinois, USA.

Abstract

Epithelial ovarian cancer (EOC) is asymptomatic at early stages and is often diagnosed late when tumor cells are highly metastatic. Lysophosphatidic acid (LPA) has been implicated in ovarian oncogenesis as levels of this lipid are elevated in patient ascites and plasma. Because the underlying mechanism governing LPA regulation of matrix metalloproteinase-2 (MMP-2) activation remains undefined, we investigated the relationship between LPA-induced changes in actin microfilament organization and MMP-2 enzymatic activity. We report that when cells were cultured at a high density, LPA mediated stress fiber and focal adhesion disassembly and significantly repressed RhoA activity in EOC cells. Inhibition of Rho-kinase/ROCK enhanced both LPA-stimulated loss of stress fibers and pro-MMP-2 activation. In contrast, expression of the constitutively active RhoA(G14V) mutant diminished LPA-induced pro-MMP-2 activation. LPA had no effects on membrane type 1-MMP or tissue inhibitor of metalloproteinase-2 expression, but up-regulated MMP-2 levels, contributing to the induction of MMP-2 activation. Interestingly, when cells were cultured at a low density, stress fibers were present after LPA stimulation, and ROCK activity was required for EOC cell migration. Collectively, these results were consistent with a model in which LPA stimulates the metastatic dissemination of EOC cells by initiating loss of adhesion and metalloproteinase activation.

PMID:
17314270
DOI:
10.1158/1541-7786.MCR-06-0319
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center