Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Technol. 2007 Jan 15;41(2):620-5.

Methane oxidation in biofilters measured by mass-balance and stable isotope methods.

Author information

  • 1Department of Oceanography, 0102 OSB, West Call Street, Florida State University, Tallahassee, Florida 32306, USA.


Simultaneous flux and isotope measurements on compost and sand biofilters showed that the fraction of CH4 oxidized, calculated from delta13C measurements using a closed system model (f(oxir,C)), averaged only 0.455 of the fraction oxidized based on mass-balance measurements (f(oxm)). The discrepancy between f(oxm) and f(oxir,C) may be partly due to complete oxidation of a portion of the inflow gas, thereby eliminating its contribution to the emitted methane on which isotopic measurements are conducted. To relate f(oxir,C) and f(oxm) a simple binary closed-system model is proposed that assumes that f(oxir,C) refers to only part of the inflow, P, and that the remainder of inflow (1 - P) is completely oxidized before reaching the outlet. This model is compared to the standard open-system model. The H-isotope fraction oxidized (f(oxir,H)) was determined for a subset of samples and found to be not significantly different from f(oxir,C). The carbon isotope fractionation factor, alphaox,C = 1.0244, and the H-isotope fractionation factor, alphaox,H = 1.2370, were determined by incubation studies. Delta13C measurements indicated that the emitted flow was more strongly oxidized by the compost biofilters (f(oxir,C) = 0.362, f(oxm) = 0.757) than the sand biofilters (f(oxir,C) = 0.222, f(oxm) = 0.609).

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center