Format

Send to

Choose Destination
Oncogene. 2007 Aug 2;26(35):5145-53. Epub 2007 Feb 12.

Negative regulation of Pim-1 protein kinase levels by the B56beta subunit of PP2A.

Author information

1
Hollings Cancer Center at the Medical University of South Carolina, Charleston, SC 29425, USA.

Abstract

The Pim protein kinases are serine threonine protein kinases that regulate important cellular signaling pathway molecules, and enhance the ability of c-Myc to induce lymphomas. We demonstrate that a cascade of events controls the cellular levels of Pim. We find that overexpression of the protein phosphatase (PP) 2A catalytic subunit decreases the activity and protein levels of Pim-1. This effect is reversed by the application of okadaic acid, an inhibitor of PP2A, and is blocked by SV40 small T antigen that is known to disrupt B subunit binding to PP2A A and C subunits. Pim-1 can coimmunoprecipitate with the PP2A regulatory B subunit, B56beta, but not B56alpha, gamma, delta, epsilon or B55alpha. Using short hairpin RNA targeted at B56beta, we demonstrate that decreasing the level of B56beta increases the half-life of Pim-1 from 0.7 to 2.8 h, and decreases the ubiquitinylation level of Pim-1. We also find that Pin1, a prolyl-isomerase, is capable of binding Pim-1 and leads to a decrease in the protein level of Pim-1. On the basis of these observations, we hypothesize that phosphorylated Pim-1 binds Pin1 allowing the interaction of PP2A through B56beta. Dephosphorylation of Pim-1 then allows for ubiquitinylation and protein degradation of Pim-1.

PMID:
17297438
DOI:
10.1038/sj.onc.1210323
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center