Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain Res. 2007 Mar 30;1139:226-34. Epub 2007 Jan 9.

Normal electrical properties of hippocampal neurons modelling early Huntington disease pathogenesis.

Author information

  • 1Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.

Abstract

Huntington disease (HD) is a neurodegenerative disorder caused by an unstable and progressive expansion of a CAG trinucleotide repeat tract in the HD gene. Previous studies using truncated forms of the HD gene have shown pronounced deficits in synaptic transmission and plasticity but rather modest changes in intrinsic cellular properties, despite overt pathology. The knock-in mice carrying a 72-80 CAG repeat mutation is an accurate genetic model of early stage HD, displaying a more subtle disease phenotype. To relate full-length HD gene expression and differential polyglutamine expansion with possible pathophysiological changes in salient electrophysiological properties of neurons that may underlie early symptoms of HD, including mood and cognitive impairments, we have conducted whole-cell recordings from hippocampal area CA1 pyramidal cells in Hdh6/Q72 and Hdh4/Q80 knock-in mice. Electrophysiological characterisation of cells obtained from young adult (<4 months) HD mice harbouring an expanded CAG repeat stretch and age-matched wild type (WT) mice revealed no significant differences in any of the active or passive membrane properties investigated. Similar findings, showing a lack of significant differences in cellular electrical properties, were obtained from cells of aged (>18 months) HD mice and WT controls, despite modest levels of repeat length variability demonstrated by single cell PCR. Thus, the current study indicates a lack of overt changes in the electrical membrane properties of pyramidal cells in HD mice accurately modelling early stage HD pathology. Furthermore, together with our previous work, these findings point to a synaptic rather than cellular locus of HD-related pathology.

PMID:
17291464
DOI:
10.1016/j.brainres.2006.12.091
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center