Send to

Choose Destination
See comment in PubMed Commons below
Cell Death Differ. 2007 May;14(5):1020-8. Epub 2007 Feb 9.

Failure of stress-induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts.

Author information

Department of Biochemistry and Molecular Biology, The Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul, Korea.


We previously reported that senescent human diploid fibroblasts (HDFs) are resistant to apoptosis induced by H(2)O(2) and staurosporine. We report here that senescent HDFs are resistant to thapsigargin-induced apoptosis as well. These agonists caused the reductions in mitochondrial membrane potential (MMP) and in the apoptosis inhibitory protein (B-cell lymphoma) only in young HDFs but not in senescent HDFs. In addition, downregulation of Bcl-2 increased the sensitivity of senescent HDFs to apoptosis induction, suggesting the significant role of Bcl-2 in apoptosis resistance of the senescent HDFs. We further found that P-cAMP response element-binding protein (CREB), a positive regulator of Bcl-2, decreased in stress-induced apoptosis of young HDFs but not in senescent HDFs, and that Bcl-2 was markedly reduced in CREB small interfering RNA (siRNA), transfected senescent HDFs. In addition, activity of protein phosphatase 2A (PP2A), which dephosphorylates p-CREB, significantly increased in young HDFs but not in senescent HDFs treated with H(2)O(2), staurosporine or thapsigargin. Taken together, these results suggest that failure of stress-induced downregulation of Bcl-2 underlies resistance of senescent HDFs to apoptosis.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center