Send to

Choose Destination
Integr Environ Assess Manag. 2007 Jan;3(1):90-100.

Relative toxicity and occurrence patterns of pesticide mixtures in streams draining agricultural watersheds dominated by corn and soybean production.

Author information

Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901, USA.


To evaluate the relative toxicity and the occurrence patterns of pesticide mixtures in streams draining agricultural watersheds, a 3-step approach was used. First, a landscape of interest was identified, defined, and isolated. Second, the relative toxicity of mixtures, on the basis of pesticide toxicity index scores, was compared with the relative toxicity of the highest individual pesticide, on the basis of highest toxicity quotient values. Third, occurrence patterns of pesticide mixtures were identified for use in follow-up mechanistic studies. The landscape of interest was identified as the corn and soybeans crop setting and concentrations of pesticides in streams within this crop setting were determined from US Geological Survey data. Pesticide toxicity index scores for individual samples were highest for the primary producers, Pseudokirchneriella subcapitata and Lemna gibba; with 95th percentile pesticide toxicity index scores of 4.7 and 1.9, respectively. The 95th percentile pesticide toxicity index score for Daphnia magna was 0.40 when a chronic sublethal endpoint was used. Pesticide toxicity index values were above the highest toxicity quotient values, indicating that consideration of mixtures does increase the estimated risk, but pesticide toxicity index scores were generally within a factor of 2 of highest toxicity quotient values, indicating that the increased risk is not large for most samples. Pesticide toxicity index scores tended to be dominated by individual pesticides and simple mixtures. Two different prioritization strategies were used to identify important mixtures for further study on the basis of potential effects on P. subcapitata. Both techniques decreased the complexity of the pesticide mixtures to consider by reducing the number of components within the identified mixtures as well as identifying a few specific combinations that constitute the majority of mixtures within the sample. Nearly all important pesticides for P. subcapitata were herbicides from 2 chemical classes: acetanilide and triazine herbicides.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center