Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Cell. 2007 Feb;12(2):261-74.

Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-beta ligands.

Author information

  • 1Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.

Abstract

During vertebrate development, Activin/Nodal-related ligands signal through Smad2, leading to its activation and accumulation in the nucleus. Here, we demonstrate that Smad2 constantly shuttles between the cytoplasm and nucleus both in early Xenopus embryo explants and in living zebrafish embryos, providing a mechanism whereby the intracellular components of the pathway constantly monitor receptor activity. We have gone on to demonstrate that an intact microtubule network and kinesin ATPase activity are required for Smad2 phosphorylation and nuclear accumulation in response to Activin/Nodal in early vertebrate embryos and TGF-beta in mammalian cells. The kinesin involved is kinesin-1, and Smad2 interacts with the kinesin-1 light chain subunit. Interfering with kinesin activity in Xenopus and zebrafish embryos phenocopies loss of Nodal signaling. Our results reveal that kinesin-mediated transport of Smad2 along microtubules to the receptors is an essential step in ligand-induced Smad2 activation.

PMID:
17276343
DOI:
10.1016/j.devcel.2007.01.010
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center