Format

Send to

Choose Destination
ACS Chem Biol. 2007 Feb 20;2(2):128-36. Epub 2007 Mar 2.

Phosphorylation and processing of the quorum-sensing molecule autoinducer-2 in enteric bacteria.

Author information

1
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA.

Abstract

Quorum sensing is a process of chemical communication that bacteria use to assess cell population density and synchronize behavior on a community-wide scale. Communication is mediated by signal molecules called autoinducers. The LuxS autoinducer synthase produces 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor to a set of interconverting molecules that are generically called autoinducer-2 (AI-2). In enteric bacteria, AI-2 production induces the assembly of a transport apparatus (called the LuxS regulated (Lsr) transporter) that internalizes endogenously produced AI-2 as well as AI-2 produced by other bacterial species. AI-2 internalization is proposed to be a mechanism enteric bacteria employ to interfere with the signaling capabilities of neighboring species of bacteria. We have previously shown that Salmonella enterica serovar Typhimurium binds a specific cyclic derivative of DPD. Here we show that following internalization, the kinase LsrK phosphorylates carbon-5 of the open form of DPD. Phosphorylated DPD (P-DPD) binds specifically to the repressor of the lsr operon, LsrR, consistent with P-DPD being the inducer of the lsr operon. Subsequently, LsrG catalyzes the cleavage of P-DPD producing 2-phosphoglycolic acid. This series of chemical events is proposed to enable enteric bacteria to respond to the presence of competitor bacteria by sequestering and destroying AI-2, thereby eliminating the competitors' intercellular communication capabilities.

Comment in

PMID:
17274596
DOI:
10.1021/cb600444h
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center