Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 2007 May 15;404(1):105-14.

Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases.

Author information

1
Centre National de la Recherche Scientifique, Université Pierre et Marie Curie-Paris6, Unité Mixte de Recherche 7139 Marine Plants and Biomolecules, Station Biologique, F-29682 Roscoff Cedex, Bretagne, France.

Abstract

Carrageenans are sulfated galactans found in the cell walls of red seaweeds. They are classified according to the number and the position of sulfate ester groups. lambda-Carrageenan is the most sulfated carrageenan and carries at least three sulfates per disaccharide unit. The sole known depolymerizing enzyme of lambda-carrageenan, the lambda-carrageenase from Pseudoalteromonas carrageenovora, has been purified, cloned and sequenced. Sequence analyses have revealed that the lambda-carrageenase, referred to as CglA, is the first member of a new family of GHs (glycoside hydrolases), which is unrelated to families GH16, that contains kappa-carrageenases, and GH82, that contains iota-carrageenases. This large enzyme (105 kDa) features a low-complexity region, suggesting the presence of a linker connecting at least two independent modules. The N-terminal region is predicted to fold as a beta-propeller. The main degradation products have been purified and characterized as neo-lambda-carratetraose [DP (degree of polymerization) 4] and neo-lambda-carrahexaose (DP6), indicating that CglA hydrolyses the beta-(1-->4) linkage of lambda-carrageenan. LC-MALLS (liquid chromatography-multi-angle laser light scattering) and (1)H-NMR monitoring of the enzymatic degradation of lambda-carrageenan indicate that CglA proceeds according to an endolytic mode of action and a mechanism of inversion of the anomeric configuration. Using 2-aminoacridone-labelled neo-lambda-carrabiose oligosaccharides, in the present study we demonstrate that the active site of CglA comprises at least 8 subsites (-4 to +4) and that a DP6 oligosaccharide binds in the subsites -4 to +2 and can be hydrolysed into DP4 and DP2.

PMID:
17269933
PMCID:
PMC1868830
DOI:
10.1042/BJ20061359
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center