Send to

Choose Destination
See comment in PubMed Commons below
Phys Med Biol. 2007 Feb 21;52(4):889-98. Epub 2007 Jan 22.

Influence of a static magnetic field (250 mT) on the antioxidant response and DNA integrity in THP1 cells.

Author information

Laboratoire de Physiologie Animale, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia.


The aim of this study was to investigate the effect of static magnetic field (SMF) exposure in antioxidant enzyme activity, the labile zinc fraction and DNA damage in THP1 cells (monocyte line). Cell culture flasks were exposed to SMF (250 mT) during 1 h (group 1), 2 h (group 2) and 3 h (group 3). Our results showed that cell viability was slightly lower in SMF-exposed groups compared to a sham exposed group. However, SMF exposure failed to alter malondialdehyde (MDA) concentration (+6%, p>0.05) and glutathione peroxidase (GPx) (-5%, p>0.05), catalase (CAT) (-6%, p>0.05) and superoxide dismutase (SOD) activities (+38%, p>0.05) in group 3 compared to the sham exposed group. DNA analysis by single cell gel electrophoresis (comet assay) revealed that SMF exposure did not exert any DNA damage in groups 1 and 2. However, it induced a low level of DNA single strand breaks in cells of group 3. To further explore the oxidative DNA damage, cellular DNA for group 3 was isolated, hydrolyzed and analysed by HPLC-EC. The level of 8-oxodGuo in this group remained unchanged compared to the sham exposed group (+6.5%, p>0.05). Cells stained with zinc-specific fluorescent probes zinpyr-1 showed a decrease of labile zinc fraction in all groups exposed to SMF. Our data showed that SMF exposure (250 mT, during 3 h) did not cause oxidative stress and DNA damage in THP1 cells. However, SMF could alter the intracellular labile zinc fraction.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Support Center