Send to

Choose Destination
Biochemistry. 2007 Feb 6;46(5):1448-55.

The substrate specificity of MutY for hyperoxidized guanine lesions in vivo.

Author information

Department of Chemistry and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.


The DNA damage product 7,8-dihydro-8-oxo-2'-deoxyguanine (8-oxoG) is a commonly used biomarker of oxidative stress. The mutagenic potential of this DNA lesion is mitigated in Escherichia coli by multiple enzymes. One of these enzymes, MutY, excises an A mispaired with 8-oxoG as part of the process to restore the original G:C base pair. However, numerous studies have shown that 8-oxoG is chemically labile toward further oxidation. Here, we examine the activity of MutY on the 8-oxoG oxidation products guanidinohydantoin (Gh), two diastereomers of spiroiminodihydantoin (Sp1 and Sp2), oxaluric acid (Oa), and urea (Ur). Single-stranded viral genomes containing a site-specific lesion were constructed and replicated in E. coli that are either proficient in DNA repair or that lack MutY. These lesions were found previously to be potently mutagenic in repair competent bacteria, and we report here that these 8-oxoG-derived lesions are equally miscoding when replicated in E. coli lacking MutY; no significant change in mutation identity or frequency is observed. Interestingly, however, in the presence of MutY, Sp1 and Sp2 are more toxic than in cells lacking this repair enzyme.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center