Send to

Choose Destination
See comment in PubMed Commons below
Aquat Toxicol. 2007 Mar 10;81(3):275-85. Epub 2007 Jan 25.

Inhibition of CYP1A enzymes by alpha-naphthoflavone causes both synergism and antagonism of retene toxicity to rainbow trout (Oncorhynchus mykiss).

Author information

School of Environmental Studies, Queen's University, Kingston, Ont., Canada K7L 3N6.


Retene (7-isopropyl-1-methyl phenanthrene) is a polycyclic aromatic hydrocarbon (PAH), that causes dioxin-like toxicity to early life stages of fish, including increased rates of mortality, developmental defects characterized as blue sac disease (BSD), and induction of CYP1A enzymes. This study determined whether toxicity is associated with retene, or with its metabolism by CYP1A enzymes to hydroxylated derivatives. Larval rainbow trout (Oncorhynchus mykiss) were co-exposed to four concentrations of waterborne retene and four concentrations of waterborne alpha-naphthoflavone (ANF), a compound that antagonizes CYP1A induction and inhibits oxygenation reactions. The prevalence of mortality and BSD increased in an exposure-dependent manner for larvae exposed to retene alone. Tissue concentrations of CYP1A protein and retene metabolites also increased, but no un-metabolized retene (i.e., the parent compound) was measurable. At low concentrations of ANF, toxicity increased dramatically, while tissue concentrations of polar hydroxylated metabolites of retene decreased, and concentrations of less polar metabolites, and of parent retene, increased. At the highest concentration of ANF, retene toxicity was eliminated, and parent retene was the predominant form in tissue; no concentration of ANF was toxic by itself. The inhibition of retene hydroxylation and toxicity by ANF suggests that toxicity was caused by specific retene metabolites, and not by parent retene. The potentiation of retene toxicity at low concentrations of ANF, and the antagonism at high concentrations is a unique, non-linear interaction based on modulating CYP1A enzyme activity and retene metabolism. It demonstrates that effects on fish of different complex mixtures of hydrocarbons may not be easily predicted.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center