Send to

Choose Destination
J Am Chem Soc. 2007 Feb 21;129(7):2147-60. Epub 2007 Jan 26.

Ultrafast structural rearrangements in the MLCT excited state for copper(I) bis-phenanthrolines in solution.

Author information

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.


Ultrafast excited-state structural dynamics of [Cu(I)(dmp)(2)](+) (dmp = 2,9-dimethyl-1,10-phenanthroline) have been studied to identify structural origins of transient spectroscopic changes during the photoinduced metal-to-ligand charge-transfer (MLCT) transition that induces an electronic configuration change from Cu(I) (3d(10)) to Cu(II) (3d(9)). This study has important connections with the flattening of the Franck-Condon state tetrahedral geometry and the ligation of Cu(II)* with the solvent observed in the thermally equilibrated MLCT state by our previous laser-initiated time-resolved X-ray absorption spectroscopy (LITR-XAS) results. To better understand the structural photodynamics of Cu(I) complexes, we have studied both [Cu(I)(dmp)(2)](+) and [Cu(I)(dpp)(2)](+) (dpp = 2,9-diphenyl-1,10-phenanthroline) in solvents with different dielectric constants, viscosities, and thermal diffusivities by transient absorption spectroscopy. The observed spectral dynamics suggest that a solvent-independent inner-sphere relaxation process is occurring despite the large amplitude motions due to the flattening of the tetrahedral coordinated geometry. The singlet fluorescence dynamics of photoexcited [Cu(I)(dmp)(2)](+) were measured in the coordinating solvent acetonitrile, using the fluorescence upconversion method at different emission wavelengths. At the bluest emission wavelengths, a prompt fluorescence lifetime of 77 fs is attributed to the excited-state deactivation processes due to the internal conversion and intersystem crossing at the Franck-Condon state geometry. The differentiation between the prompt fluorescence lifetime with the tetrahedral Franck-Condon geometry and that with the flattened tetrahedral geometry uncovers an unexpected ultrafast flattening process in the MLCT state of [Cu(I)(dmp)(2)](+). These results provide guidance for future X-ray structural studies on ultrafast time scale, as well as for synthesis toward its applications in solar energy conversion.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center