Format

Send to

Choose Destination
Cell. 2007 Jan 26;128(2):257-67.

Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G.

Author information

1
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

Abstract

Assembly of the eIF4E/eIF4G complex has a central role in the regulation of gene expression at the level of translation initiation. This complex is regulated by the 4E-BPs, which compete with eIF4G for binding to eIF4E and which have tumor-suppressor activity. To pharmacologically mimic 4E-BP function we developed a high-throughput screening assay for identifying small-molecule inhibitors of the eIF4E/eIF4G interaction. The most potent compound identified, 4EGI-1, binds eIF4E, disrupts eIF4E/eIF4G association, and inhibits cap-dependent translation but not initiation factor-independent translation. While 4EGI-1 displaces eIF4G from eIF4E, it effectively enhances 4E-BP1 association both in vitro and in cells. 4EGI-1 inhibits cellular expression of oncogenic proteins encoded by weak mRNAs, exhibits activity against multiple cancer cell lines, and appears to have a preferential effect on transformed versus nontransformed cells. The identification of this compound provides a new tool for studying translational control and establishes a possible new strategy for cancer therapy.

PMID:
17254965
DOI:
10.1016/j.cell.2006.11.046
[Indexed for MEDLINE]
Free full text

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center