Send to

Choose Destination
J Gen Virol. 2007 Feb;88(Pt 2):432-40.

Dual effect of APOBEC3G on Hepatitis B virus.

Author information

Department of Medicine and Molecular Science, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Hiroshima-shi 734-8551, Japan.


G to A hypermutation of Hepatitis B virus (HBV) and retroviruses appears as a result of deamination activities of host APOBEC proteins and is thought to play a role in innate antiviral immunity. Alpha and gamma interferons (IFN-alpha and -gamma) have been reported to upregulate the transcription of APOBEC3G, which is known to reduce the replication of HBV. We investigated the number of hypermutated genomes under various conditions by developing a quantitative measurement. The level of hypermutated HBV in a HepG2 cell line, which is semi-permissive for retrovirus, was 2.3 in 10(4) HBV genomes, but only 0.5 in 10(4) in permissive Huh7 cells. The level of APOBEC3G mRNA was about ten times greater in HepG2 cells than in Huh7 cells. Treatment of HepG2 cells with either IFN-alpha or -gamma increased the transcription of APOBEC3G and hypermutation of HBV. These mRNAs and hypermutation of HBV genomes were induced more prominently by IFN-gamma than by IFN-alpha. Both IFNs decreased the number of replicative intermediate of HBV. Overexpression of APOBEC3G reduced the number of replicative intermediate of HBV and increased hypermutated genomes 334 times, reaching 968 in 10(4) genomes. Deamination-inactive APOBEC3G did not induce hypermutation, but reduced the virus equally. Our results suggest that APOBEC3G, upregulated by IFNs, has a dual effect on HBV: induction of hypermutation and reduction of virus synthesis. The effect of hypermutation on infectivity should be investigated further.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center