Format

Send to

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2007;35(4):e24. Epub 2007 Jan 23.

Automated parallel isolation of multiple species of non-coding RNAs by the reciprocal circulating chromatography method.

Author information

1
Department of Chemistry and Biotechnology, Graduate School of Engineering, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Abstract

Recent genome-wide transcriptome analysis has identified diverse classes of non-coding RNAs (ncRNAs), some of which have been demonstrated to be functional, regulatory RNAs involved in various biological processes. Maturation of RNA molecules through various post-transcriptional processing events, including splicing, modification, editing and trimming of both ends, is required for correct folding and proper function of RNA molecules. To characterize post-transcriptional modifications and terminal chemical structures of fully processed native RNAs, it is necessary to isolate individual RNA species from a limited quantity and complex mixture of cellular RNAs. However, there have been no general and convenient strategies for isolation of individual RNAs. We describe here the first example of automated parallel isolation of individual ncRNAs using a novel method named 'reciprocal circulating chromatography (RCC)'. RCC employs multiple tip-columns packed with solid-phase DNA probes to isolate multiple RNA species from a common sample of total RNAs. A pilot RCC instrument successfully isolated various ncRNAs from E. coli, yeast and mouse.

PMID:
17251194
PMCID:
PMC1851638
DOI:
10.1093/nar/gkl1129
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center