Format

Send to

Choose Destination
See comment in PubMed Commons below
J R Soc Interface. 2007 Jun 22;4(14):575-82.

Stochastic amplification in epidemics.

Author information

1
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA. dalonso@umich.edu

Abstract

The role of stochasticity and its interplay with nonlinearity are central current issues in studies of the complex population patterns observed in nature, including the pronounced oscillations of wildlife and infectious diseases. The dynamics of childhood diseases have provided influential case studies to develop and test mathematical models with practical application to epidemiology, but are also of general relevance to the central question of whether simple nonlinear systems can explain and predict the complex temporal and spatial patterns observed in nature outside laboratory conditions. Here, we present a stochastic theory for the major dynamical transitions in epidemics from regular to irregular cycles, which relies on the discrete nature of disease transmission and low spatial coupling. The full spectrum of stochastic fluctuations is derived analytically to show how the amplification of noise varies across these transitions. The changes in noise amplification and coherence appear robust to seasonal forcing, questioning the role of seasonality and its interplay with deterministic components of epidemiological models. Childhood diseases are shown to fall into regions of parameter space of high noise amplification. This type of "endogenous" stochastic resonance may be relevant to population oscillations in nonlinear ecological systems in general.

PMID:
17251128
PMCID:
PMC2373404
DOI:
10.1098/rsif.2006.0192
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center