Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 1979 Mar;91(3):609-26.

Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants.

Author information

Center for Demographic and Population Genetics, University of Texas at Houston, Houston, Texas, 77030.


Mathematical theories of the population dynamics of sex-determining alleles in honey bees are developed. It is shown that in an infinitely large population the equilibrium frequency of a sex allele is 1/n, where n is the number of alleles in the population, and the asymptotic rate of approach to this equilibrium is 2/(3n) per generation. Formulae for the distribution of allele frequencies and the effective and actual numbers of alleles that can be maintained in a finite population are derived by taking into account the population size and mutation rate. It is shown that the allele frequencies in a finite population may deviate considerably from 1/n. Using these results, available data on the number of sex alleles in honey bee populations are discussed. It is also shown that the number of self-incompatibility alleles in plants can be studied in a much simpler way by the method used in this paper. A brief discussion about general overdominant selection is presented.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center