RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis

J Biol Chem. 2007 Mar 16;282(11):8069-78. doi: 10.1074/jbc.M604298200. Epub 2007 Jan 18.

Abstract

The small G-protein RhoA regulates the actin cytoskeleton, and its involvement in cell proliferation has also been established. In contrast, little is known about whether RhoA participates in cell survival or apoptosis. In cardiomyocytes in vitro, RhoA induces hypertrophic cell growth and gene expression. In vivo, however, RhoA expression leads to development of heart failure (Sah, V. P., Minamisawa, S., Tam, S. P., Wu, T. H., Dorn, G. W., Ross, J. Jr., Chien, K. R., and Brown, J. H. (1999) J. Clin. Investig. 103, 1627-1634), a condition widely associated with cardiomyocyte apoptosis. We demonstrate here that adenoviral overexpression of activated RhoA in cardiomyocytes induces hypertrophy, which transitions over time to apoptosis, as evidenced by caspase activation and nucleosomal DNA fragmentation. The Rho kinase inhibitors Y-27632 and HA-1077 and expression of a dominant negative Rho kinase block these responses. Caspase-9, but not caspase-8, is activated, and its inhibition prevents DNA fragmentation, consistent with involvement of a mitochondrial death pathway. Interestingly, RhoA expression induces a 3-4-fold up-regulation of the proapoptotic Bcl-2 family protein Bax. RhoA also increases levels of activated Bax and the amount of Bax protein localized at mitochondria. Bax mRNA is increased by RhoA, indicating transcriptional regulation, and the ability of a dominant negative p53 mutant to block Bax up-regulation implicates p53 in this response. The involvement of Bax in RhoA-induced apoptosis was examined by treatment with a Bax-inhibitory peptide, which was found to significantly attenuate DNA fragmentation and caspase-9 and -3 activation. The dominant negative p53 also prevents RhoA-induced apoptosis. We conclude that RhoA/Rho kinase activation up-regulates Bax through p53 to induce a mitochondrial death pathway and cardiomyocyte apoptosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine / analogs & derivatives
  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine / pharmacology
  • Amides / pharmacology
  • Animals
  • Apoptosis*
  • Caspase 8 / metabolism
  • Caspase 9 / metabolism
  • Enzyme Inhibitors / pharmacology
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Mitochondria / metabolism*
  • Myocytes, Cardiac / metabolism*
  • Myocytes, Cardiac / pathology
  • Protein Serine-Threonine Kinases / metabolism*
  • Pyridines / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Up-Regulation*
  • bcl-2-Associated X Protein / metabolism
  • rho-Associated Kinases
  • rhoA GTP-Binding Protein / metabolism*

Substances

  • Amides
  • Enzyme Inhibitors
  • Intracellular Signaling Peptides and Proteins
  • Pyridines
  • bcl-2-Associated X Protein
  • Y 27632
  • 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine
  • Protein Serine-Threonine Kinases
  • rho-Associated Kinases
  • Caspase 8
  • Caspase 9
  • rhoA GTP-Binding Protein
  • fasudil