Format

Send to

Choose Destination
Cancer Sci. 2007 Feb;98(2):201-13.

Biomarker discovery: a proteomic approach for brain cancer profiling.

Author information

1
Department of Protein Technology, Mubarak City for Scientific Research, Alexandria 21934, Egypt. egyprot@yahoo.com

Erratum in

  • Cancer Sci. 2007 May;98(5):766. James, Peter [removed].

Abstract

Gliomas in the form of astrocytomas, anaplastic astrocytomas and glioblastomas are the most common brain tumors in humans. Early detection of these cancers is crucial for successful treatment. Proteomics promises the discovery of biomarkers and tumor markers for early detection and diagnosis. In the current study, a differential gel electrophoresis technology coupled with matrix-assisted laser desorption/ionization-time of flight and liquid chromatography-tandem mass spectroscopy was used to investigate tumor-specific changes in the proteome of human brain cancer. Fifty human brain tissues comprising varying diagnostic groups (non-tumor, grade I, grade II, grade III and grade IV) were run in duplicate together with an internal pool sample on each gel. The proteins of interest were automatically picked, in-gel digested and mass spectrometry fingerprinted. Two hundred and eleven protein spots were identified successfully and were collapsed into 91 unique proteins. Approximately 20 of those 91 unique proteins had, to our knowledge, not been reported previously as differentially expressed in human brain cancer. Alb protein, peroxiredoxin 4 and SH3 domain-binding glutamic acid-rich-like protein 3 were upregulated in glioblastoma multiform versus non-tumor tissues. However, aldolase C fructose-biphosphate, creatine kinase, B chain dihydrolipoyl dehydrogenase, enolase 2, fumarate hydratase, HSP60, lactoylglutathione lyase, lucine aminopeptidase, Mu-crystallin homolog, NADH-UO 24, neurofilament triplet L protein, septin 2, stathmin and vacuolar ATP synthase subunit E were downregulated in glioblastoma multiform compared with non-tumor tissues. These differentially expressed proteins provided novel information on the differences existing between normal brain and gliomas, and thus might prove to be useful molecular indicators of diagnostic or prognostic value.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center