Send to

Choose Destination
See comment in PubMed Commons below
Neuroscience. 1991;44(1):131-5.

Further confirmation of the role of adenyl cyclase and of cAMP-dependent protein kinase in primary afferent hyperalgesia.

Author information

Department of Medicine, University of California, San Francisco 94143-0724.


Recent evidence has suggested that cAMP plays a role as a second messenger in the decrease in nociceptive threshold (or hyperalgesia) produced by agents acting on primary afferent terminals. In support of this hypothesis we report that intradermal injection of a direct activator of adenyl cyclase, forskolin, produces a dose-dependent hyperalgesia in the rat. The duration of this hyperalgesia was prolonged by the phosphodiesterase inhibitors, isobutylmethylxanthine and rolipram. Forskolin hyperalgesia was antagonized by the Rp isomer of cyclic adenosine-3'5'-monophosphothioate, an analog of cAMP that prevents the phosphorylation of the cAMP protein kinase. The Rp isomer of cyclic adenosine-3'5'-monophosphothioate also inhibited the hyperalgesia induced by a membrane-permeable analogue of cAMP, 8-bromocyclic adenosine monophosphate, as well as the hyperalgesia induced by agents that are presumed to act directly on primary afferent nociceptors: prostaglandin E2, prostaglandin I2, (8R,15S)-dihydroxyicosa(5E-9,11,13Z)tetraenoic acid; and the adenosine A2-agonist 2-phenylaminoadenosine. Although the cAMP second messenger system contributes to primary afferent hyperalgesia, we found no evidence for a contribution of protein kinase C. Thus, hyperalgesia induced by prostaglandin E2, prostacyclin (prostaglandin I2), (8R,15S)-dihydroxyicosa(5E-9,11,13Z)tetraenoic acid, the adenosine A2-agonist 2-phenylaminoadenosine, 8-bromocyclic adenosine monophosphate and the direct activator of adenyl cyclase, forskolin, were not significantly attenuated by the selective inhibition of protein kinase C by the 19-31 fragment of protein kinase C. Two other inhibitors of protein kinase C, sphingosine and staurosporine, also failed to attenuate prostaglandin E2-induced hyperalgesia.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center