Format

Send to

Choose Destination
See comment in PubMed Commons below
FASEB J. 2007 Apr;21(4):1026-36. Epub 2007 Jan 16.

Enhanced CXCL1 production and angiogenesis in adenosine-mediated lung disease.

Author information

1
Department of Biochemistry and Molecular Biology, The University of Texas Houston Medical School, Houston, TX 77030, USA.

Abstract

Angiogenesis is a feature of chronic lung diseases such as asthma and pulmonary fibrosis; however, the pathways controlling pathological angiogenesis during lung disease are not completely understood. Adenosine is a signaling molecule that has been implicated in the exacerbation of chronic lung disease and in the regulation of angiogenesis; however, the relationship between these factors has not been investigated. The current study utilized adenosine deaminase (ADA)-deficient mice to determine whether chronic elevations in adenosine in vivo result in pulmonary angiogenesis. Results demonstrate substantial angiogenesis in the tracheas of ADA-deficient mice in association with adenosine elevations. ADA replacement enzyme therapy resulted in a lowering of adenosine levels and reversal of tracheal angiogenesis, indicating that the increases in vessel number are dependent on adenosine elevations. Levels of the angiogenic chemokine CXCL1 (mouse functional homologue of human IL-8) were found to be elevated in an adenosine-dependent manner in the lungs of ADA-deficient mice. Neutralization of CXCL1 and its receptor, CXCR2, resulted in the inhibition of angiogenic activity, which suggests that CXCL1 signaling through the CXCR2 receptor mediated the observed increases in angiogenesis. Our findings suggest that adenosine plays an important role, via CXCL1, in the induction of pulmonary angiogenesis.

PMID:
17227950
DOI:
10.1096/fj.06-7301com
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center